The Future of Psychotherapy: Examining the Integration and Implications of Artificial Intelligence in Contemporary Therapeutic Approaches
Keywords:
Psychotherapy, Artificial Intelligence, Contemporary TherapyAbstract
Objective: This study aims to examine the integration and implications of artificial intelligence in contemporary therapeutic approaches.
Methodology: This narrative review involved an initial search for English and Persian articles indexed between 2015 and 2025 in reputable national and international databases, including SID, PubMed, ScienceDirect, Web of Science, and the Google Scholar search engine. Keywords such as psychotherapy, artificial intelligence, mental disorders, contemporary therapeutic approaches, and the internet were used to retrieve relevant articles. The retrieved articles were reviewed, and the implications of artificial intelligence in contemporary therapeutic approaches were extracted and analyzed. Ethical considerations, including impartial citation, textual originality, and fidelity to sources, were strictly observed throughout this documentary study.
Findings: This approach has the potential to bridge the existing gap in the application of artificial intelligence technologies compared to physical health and can play a significant role in improving mental health.
Conclusion: Further research is needed to evaluate the moderating factors and changes in psychotherapy following the integration of artificial intelligence to enhance its efficacy. Therefore, based on the review, a future research agenda is proposed to provide a foundation for further studies in this field within the Iranian context.
Downloads
References
Aafjes-van Doorn, K., Kamsteeg, C., Bate, J., & Aafjes, M. (2021). A scoping review of machine learning in psychotherapy research. Psychotherapy Research, 31(1), 92-116. https://doi.org/10.1080/10503307.2020.1808729
Alimour, S. A., Alnono, E., Aljasmi, S., El Farran, H., Alqawasmi, A. A., Alrabeei, M. M., Shwedeh, F., & Aburayya, A. (2024). The quality traits of artificial intelligence operations in predicting mental healthcare professionals' perceptions: a case study in the psychotherapy division. Journal of Autonomous Intelligence, 7(4), 1-17. https://doi.org/10.32629/jai.v7i4.1438
Bendig, E., Erb, B., Schulze-Thuesing, L., & Baumeister, H. (2019). The Next Generation: Chatbots in Clinical Psychology and Psychotherapy to Foster Mental Health: A Scoping Review. Verhaltenstherapie, 32(Suppl. 1), 64-76. https://doi.org/10.1159/000501812
Boucher, E. M., Harake, N. R., Ward, H. E., Stoeckl, S. E., Vargas, J., Minkel, J., Parks, A. C., & Zilca, R. (2021). Artificially Intelligent Chatbots in Digital Mental Health Interventions: A Review. Expert Review of Medical Devices, 18(sup1), 37-49. https://doi.org/10.1080/17434440.2021.2013200
Chekroud, A. M., Bondar, J., Delgadillo, J., Doherty, G., Wasil, A., Fokkema, M., Cohen, Z., Belgrave, D., DeRubeis, R., Iniesta, R., Dwyer, D., & Choi, K. (2021). The promise of machine learning in predicting treatment outcomes in psychiatry. World Psychiatry, 20(2), 154-170. https://doi.org/10.1002/wps.20882
Chekroud, A. M., Hawrilenko, M., Loho, H., Bondar, J., Gueorguieva, R., Hasan, A., Kambeitz, J., Corlett, P. R., Koutsouleris, N., Krumholz, H. M., Krystal, J. H., & Paulus, M. (2024). Illusory generalizability of clinical prediction models. Science, 383, 164-167. https://doi.org/10.1126/science.adg8538
Dwyer, D. B., Falkai, P., & Koutsouleris, N. (2018). Machine learning approaches for clinical psychology and psychiatry. Annual Review of Clinical Psychology, 14, 91-118. https://doi.org/10.1146/annurev-clinpsy-032816-045037
Fitzpatrick, K. K., Darcy, A., & Vierhile, M. (2017). Delivering Cognitive Behavior Therapy to Young Adults With Symptoms of Depression and Anxiety Using a Fully Automated Conversational Agent (Woebot): A Randomized Controlled Trial. Jmir Mental Health, 4(2). https://doi.org/10.2196/mental.7785
Ghosh, S. (2024). Artificial Intelligence in Future Psychological Revolution. https://www.researchgate.net/publication/385130818_Artificial_Intelligence_in_Future_Psychological_Revolution
Haber, Y., Levkovich, I., Hadar-Shoval, D., & Elyoseph, Z. (2024). The artificial third: a broad view of the effects of introducing generative artificial intelligence on psychotherapy. Jmir Mental Health, 11, e54781. https://doi.org/10.2196/54781
Hilbert, K., Jacobi, T., Kunas, S. L., Elsner, B., Reuter, B., Lueken, U., & Kathmann, N. (2021). Identifying CBT non-response among OCD outpatients: A machine-learning approach. Psychotherapy Research, 31(1), 52-62. https://doi.org/10.1080/10503307.2020.1839140
Kang, C., Novak, D., Urbanova, K., Cheng, Y., & Hu, Y. (2024). Domain-specific improvement on psychotherapy chatbot using assistant. IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops,
Lau, Y., Ang, W. H. D., Ang, W. W., Pang, P. C. I., Wong, S. H., & Chan, K. S. (2025). Artificial Intelligence-Based Psychotherapeutic Intervention on Psychological Outcomes: A Meta‐Analysis and Meta‐Regression. Depression and Anxiety, 2025(1), 8930012. https://doi.org/10.1155/da/8930012
Lee, C. T., Harty, S., Adegoke, A., Palacios, J., Gillan, C. M., & Richards, D. (2023). The effectiveness of low-intensity psychological interventions for comorbid depression and anxiety in patients with long-term conditions: A real-world naturalistic observational study in IAPT integrated care. International Journal of Behavioral Medicine, 30, 1-11. https://pubmed.ncbi.nlm.nih.gov/37697142/
Li, H., Zhang, R., Lee, Y. C., Kraut, R. E., & Mohr, D. C. (2023). Systematic review and meta-analysis of AI-based conversational agents for promoting mental health and well-being. NPJ Digital Medicine, 6, 236. https://doi.org/10.1038/s41746-023-00979-5
Maarsingh, O. R., Heymans, M. W., Verhaak, P. F., Penninx, B. W. J. H., & Comijs, H. C. (2018). Development and external validation of a prediction rule for an unfavorable course of late-life depression: A multicenter cohort study. Journal of affective disorders, 235, 105-113. https://doi.org/10.1016/j.jad.2018.04.026
Mohr, D. C., Azocar, F., Bertagnolli, A., Choudhury, T., Chrisp, P., Frank, R., Harbin, H., Histon, T., Kaysen, D., Nebeker, C., Richards, D., Schueller, S. M., Titov, N., Torous, J., & Areán, P. A. (2021). Banbury forum consensus statement on the path forward for digital mental health treatment. Psychiatric Services, 72(6), 677-683. https://doi.org/10.1176/appi.ps.202000561
Moore, B., Herington, J., & Tekin, S. (2025). The Integration of Artificial Intelligence-Powered Psychotherapy Chatbots in Pediatric Care: Scaffold or Substitute? The Journal of Pediatrics. https://doi.org/10.1016/j.jpeds.2025.114509
Moshe, I., Terhorst, Y., Philippi, P., Domhardt, M., Cuijpers, P., Cristea, I., Pulkki-Råback, L., Baumeister, H., & Sander, L. B. (2021). Digital interventions for the treatment of depression: A meta-analytic review. Psychological bulletin, 147(8), 749-786. https://doi.org/10.1037/bul0000334
Mosquera, F. E. C., Guevara-Montoya, M. C., Serna-Ramirez, V., & Liscano, Y. (2024). Neuroinflammation and Schizophrenia: new therapeutic strategies through Psychobiotics, Nanotechnology, and Artificial Intelligence (AI). Journal of Personal Medicine, 14(4), 391. https://doi.org/10.3390/jpm14040391
Nelson, J., Kaplan, J., Simerly, G., Nutter, N., Edson-Heussi, A., Woodham, B., & Broman-Fulks, J. (2025). The balance and integration of artificial intelligence within cognitive behavioral therapy interventions. Current Psychology, 1-11. https://doi.org/10.1007/s12144-025-07320-1
NHS England. (2023). NHS talking therapies for anxiety and depression. https://tinyurl.com/6x9dpzea
Norcross, J. C., & Lambert, M. J. (2019). Psychotherapy relationships that work. Evidence-based therapist contributions. Oxford University Press. https://doi.org/10.1093/med-psych/9780190843953.001.0001 10.1093/med-psych/9780190843960.001.0001
Ooi, P. B., & Wilkinson, G. (2024). Enhancing ethical codes with artificial intelligence governance- a growing necessity for the adoption of generative AI in counselling. British Journal of Guidance & Counselling, 1-15. https://doi.org/10.1080/03069885.2024.2373180
Pandey, A., & Misra, M. (2023). Artificial Intelligence in Mental Health Care. https://doi.org/10.1007/978-981-99-6472-7_8
Pham, K. T., Nabizadeh, A., & Selek, S. (2022). Artificial Intelligence and Chatbots in Psychiatry. Psychiatric Quarterly, 93(1), 249-253. https://doi.org/10.1007/s11126-022-09973-8
Plakun, E. M. (2023). Psychotherapy and artificial intelligence. Journal of Psychiatr Pract, 29(6), 476-479. https://doi.org/10.1097/PRA.0000000000000748
Poalelungi, D. G., Musat, C. L., Fulga, A., Neagu, M., Neagu, A. I., Piraianu, A. I., & Fulga, I. (2023). Advancing patient care: how artificial intelligence is transforming healthcare. Journal of Personal Medicine, 13(8), 1214. https://doi.org/10.3390/jpm13081214
Prasad, N., Chein, I., Regan, T., Enrique, A., Palacios, J., Keegan, D., Munir, U., Tanno, R., Richardson, H., Nori, A., Richards, D., Doherty, G., Belgrave, D., & Thieme, A. (2023). Deep learning for the prediction of clinical outcomes in internet-delivered CBT for depression and anxiety. PLoS One, 18(11), e0272685. https://doi.org/10.1371/journal.pone.0272685
Prescott, J., & Barnes, S. (2024). Artificial intelligence positive psychology and therapy. Couns Psychother Res, 24, 843-845. https://doi.org/10.1002/capr.12784
Richards, D. (2025). Artificial intelligence and psychotherapy: A counterpoint. Counselling and Psychotherapy Research, 25(1), e12758. https://doi.org/10.1002/capr.12758
Ronneberg, C. R., Lv, N., Ajilore, O. A., Kannampallil, T., Smyth, J., Kumar, V., Barve, A., Garcia, C., Dosala, S., Wittels, N., Xiao, L., Aborisade, G., Zhang, A., Tang, Z., Johnson, J., & Ma, J. (2024). Study of a PST-trained voice-enabled artificial intelligence counselor for adults with emotional distress (SPEAC-2): design and methods. Contemporary Clinical Trials, 142, 107574. https://doi.org/10.1016/j.cct.2024.107574
Santomauro, D. F., Mantilla Herrera, A. M., Shadid, J., Zheng, P., Ashbaugh, C., Pigott, D. M., Abbafati, C., Adolph, C., Amlag, J. O., Aravkin, A. Y., Bang-Jensen, B. L., Bertolacci, G. J., Bloom, S. S., Castellano, R., Castro, E., Chakrabarti, S., Chattopadhyay, J., Cogen, R. M., Collins, J. K., & … Ferrari, A. J. (2021). Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. The lancet, 398(10312), 1700-1712. https://doi.org/10.1016/S0140-6736(21)02143-7
Titov, N., Dear, B., Nielssen, O., Staples, L., Hadjistavropoulos, H., Nugent, M., Adlam, K., Nordgreen, T., Bruvik, K. H., Hovland, A., Repål, A., Mathiasen, K., Kraepelien, M., Blom, K., Svanborg, C., Lindefors, N., & Kaldo, V. (2018). ICBT in routine care: A descriptive analysis of successful clinics in five countries. Internet Interventions, 13, 108-115. https://doi.org/10.1016/j.invent.2018.07.006
Vaidyam, A. N., Wisniewski, H., Halamka, J. D., Kashavan, M. S., & Torous, J. B. (2019). Chatbots and Conversational Agents in Mental Health: A Review of the Psychiatric Landscape. The Canadian Journal of Psychiatry, 64(7), 456-464. https://doi.org/10.1177/0706743719828977
World Health Organization. (2022). World Mental Health Report: Transforming Mental Health for All. https://www.who.int/publications/i/item/9789240049338
Yang, R. (2024). Research progress and application of Brain-Computer Interfaces in the diagnosis and treatment of neurological diseases. 2024 5th International Conference on Electronic Communication and Artificial Intelligence (ICECAI),
Zheng, G., Zheng, W., Zhang, Y., Wang, J., Chen, M., Wang, Y., Cai, T., Yao, Z., & Hu, B. (2023). An attention-based multi-modal MRI fusion model for major depressive disorder diagnosis. Journal of Neural Engineering, 20(6), 066005. https://doi.org/10.1088/1741-2552/ad038c
Zhong, W., Luo, J., & Zhang, H. (2024). The therapeutic effectiveness of artificial intelligence-based chatbots in alleviation of depressive and anxiety symptoms in short-course treatments: A systematic review and meta-analysis. Journal of affective disorders. https://doi.org/10.1016/j.jad.2024.04.057